Predicting Customer Models Using Behavior-Based Features in Shops

نویسندگان

  • Junichiro Mori
  • Yutaka Matsuo
  • Hitoshi Koshiba
  • Kenro Aihara
  • Hideaki Takeda
چکیده

Recent sensor technologies have enabled the capture of users’ behavior data. Given the large amount of data currently available from sensor-equipped environments, it is important to attempt characterization of the sensor data for automatically modeling users in a ubiquitous and mobile computing environment. As described herein, we propose a method that predicts a customer model using features based on customers’ behavior in a shop. We capture the customers’ behavior using various sensors in the form of the time duration and the sequence between blocks in the shop. Based on behavior data from the sensors, we design features that characterize the behavior pattern of a customer in the shop. We employ those features using a machine learning approach to predict customer attributes such as age, gender, occupation, and interest. Our results show that our designed behavior-based features perform with F -values of 70–90% for prediction. We also discuss the potential applications of our method in user modeling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Customer Behavior Mining Framework (CBMF) using clustering and classification techniques

The present study proposes a Customer Behavior Mining Framework on the basis of data mining techniques in a telecom company. This framework takes into account the customers’ behavior patterns and predicts the way they may act in the future. Firstly, clustering technique is used to implement portfolio analysis and previous customers are divided based on socio-demographic features using k</em...

متن کامل

Using Regression based Control Limits and Probability Mixture Models for Monitoring Customer Behavior

In order to achieve the maximum flexibility in adaptation to ever changing customer’s expectations in customer relationship management, appropriate measures of customer behavior should be continually monitored. To this end, control charts adjusted for buyer’s/visitor’s prior intention to repurchase or visit again are suitable means taking into account the heterogeneity across customers. In the ...

متن کامل

Predicting Customer Churn Using CLV in Insurance Industry

Today, increased level of customer awareness caused themto access to the other suppliers easily and they can get their servicesfrom the competitors with similar or even better quality and same price.Therefore, focusing on customers and preventing them to leave, has beenthe most important strategy for any company. Researches have shownthat retaining former customers is cheaper than attracting ne...

متن کامل

Predicting ε50 for Lateral Behavior of Piles in Marine Clay Using an Evolutionary Based Approach

Analyzing piles subjected to lateral loads significantly depends on soil resistance at any point along the pile as a function of pile deflection, known as p-y curve. On the other hand, the deformation characteristics of soil defined as “the soil strain at 50% of maximum deviatoric stress (ε50)” has considerable effect on the generated p-y curve. In this research, several models are proposed to ...

متن کامل

Comparison of logistic regression and neural network models in predicting the outcome of biopsy in breast cancer from MRI findings

Background: We designed an algorithmic model based on the logistic regression analysis and a non-algorithmic model based on the Artificial Neural Network (ANN). Materials and methods: The ability of these models was compared together in clinical application to differentiate malignant from benign breast tumors in a study group of 161 patients' records. Each patient’s record consisted of 6 subjec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009